
Ivan Leo (@ivanleomk on twitter)

why you should still use structured outputs

Building Language Model
Applications

Some Questions

• What’s so different about LLM Applications?

• How can we intelligently focus on building out application logic instead of just error
handling?

• How do we know what queries our application is good at handling

• How do we systematically find weak points in our system before deployment?

Most of this content comes from a post I wrote called Taming Your LLM Application

https://ivanleo.com/blog/taming-your-llm-application

How LLMs Flip The Script

• Instead of waiting months and
spending 100-200k+ USD for a dataset,
you can deploy early

• Synthetic data allows us to generate
test cases before we go to production.
This continues even after we’ve
deployed.

Why care about Function Calling?

• It eliminates a whole new class of
errors such as inconsistent outputs,
parsing errors and more

• It’s not the same as JSON mode - which
tries to just get the model to output
valid JSON

Manual JSON parsing is Hard

• Manually parsing the result of the JSON
output is a brittle way to get the output
you want

• What happens here if the language
model outputs something like AS A
LANGUAGE MODEL I THINK THE
ANSWER IS GOING TO BE -23

• Also difficult to iterate and experiment
with different response formats

Function Calling?

• Most inference providers support a variation of
function calling (Eg. OpenAI, Gemini and Anthropic)

• You can get up to 60% performance gains by
renaming a single field

• With a model fine-tuned for that specific capability,
we can get consistent outputs that make it easy to
compare models

https://python.useinstructor.com/blog/2024/09/26/bad-schemas-could-break-your-llm-structured-outputs/

Instructor

• We do one thing well - getting you
validated outputs from a model

• We provide a consistent OpenAI API
that allows you to basically change
between different providers with
minimal code changes

• We’re fully open source so if you’re
interested do check out our repo

It’s more than just a python class

What can you do with Structured Outputs?

• Since Pydantic Objects are really just vanilla
Python classes, we can define methods on
them

• This opens up a lot of interesting possibilities
that you can work with (Eg. Running an SQL
call here with it)

It’s more than just a python class

What can you do with Structured Outputs?

• You can also implement repair operations
using libraries such as `fuzzywuzzy` to find the
closest match

It’s more than just a python class

What can you do with Structured Outputs?

• On a downstream level, we can render and
stream in the data as it comes in (with
validation on a field level)

• This allows us much more safety and
confidence in building out more complex
features

Now that we have reliable outputs,
how can we measure improvement?

Binary Metrics

• Most people like LLM as a judge to measure
their RAG output, run an expensive harness to
test their generated SQL code or use a human
in the loop to check generated LLM response

• Starting with binary metrics gives us a way to
iterate fast before we start looking at more
expensive evaluation methods

• Let’s look at a few examples - RAG and Text-2-
SQL

RAG

• Instead of using a manual LLM as a judge to
evaluate generated responses, we can
measure retrieval instead

• Build towards longer context and more
intelligent models instead of investing in
complex infrastructure to work with today’s
models

Measuring Retrieval

• We can use LLMs to generate synthetic
queries for chunk(s)

• Vary them systematically using user personas,
length, tone and other domain specific
methods

• Test Retrieval using recall and mrr to see how
different methods perform

Measuring Retrieval

• Let’s say we run this experiment on n=100
queries and we get these results

• Then we might say that ok it seems like maybe
BM25 or Full text search is a great alternative to
get started

• Recall@15 for FTS is better than Recall@10 for
vector search - easier/cheaper to deploy let’s
go ahead

• Less vibes more objective numbers

Text-2-SQL

• Generate synthetic queries for each SQL
query and manually vet to make sure we’re
referencing at least 2-3 tables or using
complex functions (Minimum complexity)

• Large Open Source datasets like BirdSQL are
a good starting point

• Write questions that rely on implicit context or
relationships between tables

Text-2-SQL

• By doing so, we’re able to take different
combinations of search methods

• Evaluate all of these with precision and recall
metrics too

• Validate your ideas with objective values
rather than vibes~

Text-2-SQL

• Without binary metrics, we might say that ok
summaries are better

• But with binary metrics we can quantify the
impact on recall as number of snippets
increases

• We can iteratively discover the best
summarisation prompt to extract inter-table
relationships

Synthetic Data

• With language models, we can generate
synthetic data before we even get to
production

• This allows us to fuzz out how our model is
going to perform at each stage

Synthetic Data

• We can generate multiple variations of the same
query by varying tone, context etc

• This allows to validate base and simple cases

• Subsequently we blend in user data to generate
queries that are on distribution

• With a large enough number of test cases, we can
do sensitivity analysis and get a rough sense for
model performance (https://ivanleo.com/blog/
are-your-eval-improvements-just-pure-chance)

https://ivanleo.com/blog/are-your-eval-improvements-just-pure-chance
https://ivanleo.com/blog/are-your-eval-improvements-just-pure-chance
https://ivanleo.com/blog/are-your-eval-improvements-just-pure-chance

Query Analysis

• Eventually when we ship to
production, we’ll want to know
how well we’re performing for
specific queries

• Topic modelling allows us to
discover potential clusters/
categories that are doing well or
very bad

Query Analysis

• We want to then use these
categories in production to
segment populations of user
queries to either highlight or
prioritise

• Combine User Feedback with
Volume etc - Segmentation is the
name of the game

Kura

• Kura is a library that aims to help
you generate explainable clusters

• We use a language model to
extract general user requests from
conversations

• We then generate clusters for
these conversations and
recursively combine them by
embedding and summarising

Validation using Synthetic Data

Kura

• We first start with high level
categories that we’d like to work
with

• Each has a category and a
description

Validation using Synthetic Data

Kura

• Generate subcategories that are more specific and mention specific frameworks, details
or use cases

Kura

Kura

• This was the original ground truth
distribution that we started with

• Kura ended up categorising these
into five distinct clusters that
better reflect the technical nature
of conversations

Kura

• You can give it a try today with
docs at usekura.xyz

• I’ve written out two main ways

• CLI with the command Kura that
provides a simple react frontend
to visualise clusters

• Raw underlying Kura class to
have more control

Validation using Synthetic Data

Query Understanding

• Fundamentally - these provide suggestions for how to think about and classify your
conversations

• You can use other libraries like BERTopic that provide support for topic modelling
across a larger time period for instance and experiment with different
configurations

• The main goal is to basically learn how to prioritise and deprioritise features in
response to user feedback or identify critical issues to resolve

What did we talk about

Summary

• Structured Outputs help eliminate a whole class of errors

• Binary metrics enable fast iteration

• Synthetic data helps find edge cases before production and even during
deployment it helps us prevent regressions

• Query understanding and segmentation using libraries like Kura and Bertopic helps
us to understand how users are using our application and the P(success | query
type) for each individual type

Feel free to reach out!

Questions

• I’m perpetually online on twitter at ivanleomk so just message me

• I write longer form articles at ivanleo.com with a small newsletter that I’m
experimenting with

• Do give instructor and kura a try! I’ll try my best to resolve issues and kura is very
new so please bear with me as I work on it in between client work and other
projects

http://ivanleo.com

